📢 Gate广场 #NERO发帖挑战# 秀观点赢大奖活动火热开启!
Gate NERO生态周来袭!发帖秀出NERO项目洞察和活动实用攻略,瓜分30,000NERO!
💰️ 15位优质发帖用户 * 2,000枚NERO每人
如何参与:
1️⃣ 调研NERO项目
对NERO的基本面、社区治理、发展目标、代币经济模型等方面进行研究,分享你对项目的深度研究。
2️⃣ 参与并分享真实体验
参与NERO生态周相关活动,并晒出你的参与截图、收益图或实用教程。可以是收益展示、简明易懂的新手攻略、小窍门,也可以是行情点位分析,内容详实优先。
3️⃣ 鼓励带新互动
如果你的帖子吸引到他人参与活动,或者有好友评论“已参与/已交易”,将大幅提升你的获奖概率!
NERO热门活动(帖文需附以下活动链接):
NERO Chain (NERO) 生态周:Gate 已上线 NERO 现货交易,为回馈平台用户,HODLer Airdrop、Launchpool、CandyDrop、余币宝已上线 NERO,邀您体验。参与攻略见公告:https://www.gate.com/announcements/article/46284
高质量帖子Tips:
教程越详细、图片越直观、互动量越高,获奖几率越大!
市场见解独到、真实参与经历、有带新互动者,评选将优先考虑。
帖子需原创,字数不少于250字,且需获得至少3条有效互动
IOSG Ventures:LLM赋能区块链 开启链上体验新纪元
撰文:Yiping,IOSG Ventures
写在前面
Source: IOSG Ventures
本篇研究报告分为上下两部发表,本文为上部,我们将重点关注 LLM 在加密领域的应用,并探讨应用落地的策略。
LLM 是什么?
LLM(大语言模型)是一种计算机化语言模型,由一个具有大量参数(通常为数十亿)的人工神经网络组成。这些模型在大量未标记的文本上进行训练。
2018 年前后,LLM 的诞生彻底改变了自然语言处理的研究。与以往需要为特定任务训练特定监督模型的方法不同,LLM 作为一个通用模型,在各种任务上都表现出色。其能力和应用包括:
LLM 的优势包括其对大量数据的理解能力、执行多种语言相关任务的能力,以及根据用户需求定制化结果的潜力。
常见的大型语言模型应用
由于其出众得自然语言理解能力,LLM 具有相当大的潜力,而开发者主要关注以下两个方面:
正是这两个方面让与 XX 聊天的 LLM 应用如雨后春笋般爆发。例如,与 PDF 聊天、与文档聊天以及与学术论文聊天。
随后,人们尝试将 LLM 与各种数据源融合。开发者已成功将平台,如 Github、Notion 和一些笔记软件与 LLM 整合。
为了克服 LLM 固有的限制,不同的工具被纳入了系统中。第一个这样的工具是搜索引擎,为 LLM 提供了访问最新知识的能力。进一步的进展将把 WolframAlpha、Google Suites 和 Etherscan 等工具与大型语言模型整合。
LLM Apps 的架构
下图概述了 LLM 应用在回应用户查询时的流程:首先,相关的数据源被转换为嵌入向量并存储在向量数据库中。LLM 适配器使用用户查询和相似性搜索从向量数据库中找到相关的上下文。相关的上下文被放入 中并发送给 LLM 。LLM 将执行这些 ,并使用工具生成回答。有时,LLM 会在特定数据集上进行调优,以提高准确性并降低成本。
LLM 应用的工作流程可以大致分为三个主要阶段:
将 LLM 引入加密领域
尽管加密领域(Web3)与 Web2 有一些类似的应用,但在加密领域中开发出优秀的 LLM 应用需要尤其谨慎。
加密生态系统独特,具有其特有的文化、数据和融合性。在这些加密限定的数据集上微调的 LLM 可以以相对较低的成本提供优越的结果。虽然数据丰富可得,但在类似 HuggingFace 等平台上明显缺乏开放数据集的。目前,只有一个与智能合约相关的数据集,其中包含 11.3 万个智能合约。
开发者还面临将不同工具整合到 LLM 中的挑战。这些工具与 Web2 中使用的工具不同,它们赋予 LLM 访问与交易相关的数据、与去中心化应用(Dapp)互动以及执行交易的能力。到目前为止,我们还没有在 Langchain 中找到任何 Dapp 的集成。
尽管开发高质量的加密 LLM 应用可能需要额外的投入,但 LLM 天然适合加密领域。这个领域提供了丰富的、干净的、结构化的数据。再加上 Solidity 代码通常简洁明了,这使得 LLM 更容易生成功能性的代码。
在《下部》中,我们将讨论 LLM 可以帮助区块链领域的 8 个潜在方向,如:
敬请期待!