✈️ Gate 广场【Gate Travel 旅行分享官召集令】
广场家人们注意啦!Gate Travel 已经上线~ 机票+酒店一站式预订,还能用加密货币直接付款 💸
所以说,你的钱包和你的旅行梦终于可以谈恋爱了 😎 💕
现在广场开启 #GateTravel旅行分享官# 活动,邀你来秀旅行灵感 & 使用体验!💡
🌴 参与方式:
1️⃣ 在【广场】带话题 #Gate Travel 旅行分享官# 发帖
2️⃣ 你可以:
你最想用 Gate Travel 去的目的地(私藏小岛 or 网红打卡点都行)
讲讲用 Gate Travel 订票/订酒店的奇妙体验
放放省钱/使用攻略,让大家省到笑出声
或者直接写一篇轻松的 Gate Travel 旅行小故事
📦 奖励安排,走起:
🏆 优秀分享官(1 名):Gate 旅行露营套装
🎖️ 热门分享官(3 名):Gate 旅行速干套装
🎉 幸运参与奖(5 名):Gate 国际米兰旅行小夜灯
*海外用户 旅行露营套装 以 $100 合约体验券,旅行速干套装 以 $50 合约体验券折算,国际米兰旅行小夜灯以 $30合约体验券折算。
📌 优质内容将有机会得到官方账号转发翻牌提升社区曝光!
📌 帖文将综合互动量、内容丰富度和创意评分。禁止小号刷贴,原创分享更容易脱颖而出!
🕒 8月20 18:00 - 8月28日 24:00 UTC+
千元预算半天训练,效果媲美主流大模型,开源可商用中文LLaMA-2
LLaMA-2 相较于 LLaMA-1,引入了更多且高质量的语料,实现了显著的性能提升,全面允许商用,进一步激发了开源社区的繁荣,拓展了大型模型的应用想象空间。然而,从头预训练大模型的成本相当高,被戏称 「5000 万美元才能入局」,这使得许多企业和开发者望而却步。那么,如何以更低的成本构建自己的大型模型呢?
作为大模型降本增效的领导者,Colossal-AI 团队充分利用 LLaMA-2 的基础能力,采用高效的训练方法,仅使用约 **8.5B token 数据、15 小时、数千元的训练成本,**成功构建了性能卓越的中文 LLaMA-2,在多个评测榜单性能优越。
相较于原始 LLaMA-2,在成功提升中文能力的基础上,进一步提升其英文能力,性能可与开源社区同规模预训练 SOTA 模型媲美。秉承 Colossal-AI 团队一贯的开源原则,完全开源全套训练流程、代码及权重,无商用限制,并提供了一个完整的评估体系框架 Colossal,以实现低成本的可复现性。相关方案还可迁移应用到任意垂类领域和从头预训练大模型的低成本构建。
开源代码与权重:
在常见的中、英文评测榜单,可以看到,在英文 MMLU 榜单中,Colossal-LLaMA-2-7B-base 在低成本增量预训练的加持下,克服了灾难性遗忘的问题,能力逐步提升(44.47 -> 53.06),在所有 7B 规模的模型中,表现优异。
在中文榜单中,主要对比了 CMMLU, AGI, GAOKAO 与 C-,效果远超基于 LLaMA-2 的其他中文汉化模型。即使与其他采用中文语料,可能花费上千万元成本,从头预训练的各大知名模型相比,Colossal-LLaMA-2 在同规模下仍表现抢眼。尤其是与原始 LLaMA-2 相比,在中文能力上有了质的飞跃 (CMMLU: 32.97 -> 49.89)。
而**通过 SFT、LoRA 等方式微调,能有效注入基座模型的知识与能力十分有限,**不能较好的满足高质量领域知识或垂类模型应用的构建的需求。
为了更好的评估模型的性能,Colossal-AI 团队不仅仅依赖于量化的指标,还对于模型的不同方面进行了人工的评估,以下是一些例子:
词表扩充与模型初始化
LLaMA-2 原始词表并未针对中文做特定优化,所包含的中文词有限,导致在中文语料上理解力不足。因此,首先对 LLaMA-2 进行了词表的扩充。
Colossal-AI 团队发现:
因此,经过反复实验,同时考虑了训练的质量与训练的效率,Colossal-AI 团队最终确定将词表从 LLaMA-2 原有的 32000 扩充至 69104。
有了扩充好的词表,下一步就是基于原有的 LLaMA-2 初始化新词表的 embedding。为了更好的迁移 LLaMA-2 原有的能力,实现从原有 LLaMA-2 到 中文 LLaMA-2 能力的快速迁移,Colossal-AI 团队利用原有的 LLaMA-2 的权重,对新的 embedding 进行均值初始化。既保证了新初始化的模型在初始状态下,英文能力不受影响,又可以尽可能的无缝迁移英文能力到中文上。
数据构建
为了更大程度的降低训练的成本,高质量的数据在其中起着关键作用,尤其是对于增量预训练,对于数据的质量,分布都有着极高的要求。为了更好的筛选高质量的数据,Colossal-AI 团队构建了完整的数据清洗体系与工具包,以便筛选更为高质量的数据用于增量预训练。
以下图片展示了 Colossal-AI 团队数据治理的完整流程:
最后,为了提高训练的效率,对于相同主题的数据,Colossal-AI 团队对数据的长度进行了排序,并根据 4096 的最大长度进行拼接。
训练策略
多阶段训练
在训练方面,针对增量预训练的特点,Colossal-AI 团队设计了多阶段,层次化的增量预训练方案,将训练的流程划分为三个阶段:
多阶段相辅相成,最终保证模型在中英文的能力上齐头并进。
分桶训练
增量预训练对于数据的分布极为敏感,均衡性就尤为重要。因此,为了保证数据的均衡分布,Colossal-AI 团队设计了数据分桶的策略,将同一类型的数据划分为 10 个不同的 bins。在训练的过程中,每个数据桶中均匀的包含每种类型数据的一个 bin,从而确保了每种数据可以均匀的被模型所利用。
评估体系
为了更好的评估模型的性能,Colossal-AI 团队搭建了完整的评估体系 - Colossal,希望通过多维度对大语言模型进行评估。流程框架代码完全开源,不仅支持结果复现,也支持用户根据自己不同的应用场景自定义数据集与评估方式。评估框架特点总结如下:
构建通用大模型到垂类大模型迁移的桥梁
由 Colossal-AI 团队的经验来看,基于 LLaMA-2 构建中文版模型,可基本分为以下流程:
答案是肯定的,并且在业务落地的场景中是非常有意义的。
随着 ChatGPT 掀起的人工智能浪潮,全球各大互联网巨头、AI 公司、创企、高校和研究机构等,纷纷在通用大模型的赛道上策马狂奔。然而,通用大模型通用能力的背后往往是针对特定领域内知识的不足,因此,在实际落地上,大模型幻觉的问题就变的尤为严重。针对业务微调固然可以有一定的收获,但垂类大模型的缺失导致应用落地存在性能瓶颈。如果可以快速低成本构造一个垂类大模型,再基于垂类大模型进行业务微调,一定能在业务落地上更进一步,占得先机与优势。
将以上流程应用在任意领域进行知识迁移,即可低成本构建任意领域垂类基座大模型的轻量化流程:
系统优化
上述 Colossal-LLaMA-2 的亮眼表现和成本优势,构建在低成本 AI 大模型开发系统 Colossal-AI 之上。
Colossal-AI 基于 PyTorch,可通过高效多维并行、异构内存等,降低 AI 大模型训练 / 微调 / 推理的开发与应用成本,提升模型任务表现,降低 GPU 需求等。仅一年多时间便已在 GitHub 开源社区收获 GitHub Star 3 万多颗,在大模型开发工具与社区细分赛道排名世界第一,已与世界 500 强在内的多家知名厂商联合开发 / 优化千亿 / 百亿参数预训练大模型或打造垂类模型。
Colossal-AI 云平台
为了进一步提高 AI 大模型开发和部署效率,Colossal-AI 已进一步升级为 Colossal-AI 云平台,以低代码 / 无代码的方式供用户在云端低成本进行大模型训练、微调和部署,快速将各种模型接入到个性化的应用中。
参考链接: